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We construct a family of measures called infinite products which generalize 
Gibbs measures in the one-dimensional lattice gas model. The multifractal 
properties of these measures are stndied under some regularity conditions. In 
particular, if the r-function is differentiable, we prove a formula which gives the 
Hausdorff dimension and packing dimension of the set of singularity points of 
a given order. Mathematical examples include Riesz products, g-measures, and 
G-measures. 

KEY WORDS:  Gibbs measure; Riesz product; pressure function; multifractal 
analysis. 

1. I N T R O D U C T I O N  

Consider a system with infinite sites represented by the set of integers Z 
and with finite states represented by { 1, 2 ..... q}(q />2) .  Then a configura- 
tion of the system is a sequence x =  (x,,) in D = { 1, 2 ..... q} z. For such a 
configuration, we define the energy contribution due to xk by 

~k(x) = T~t~(xk) + ~_ y" ~t~2~t ,J, k', .x), xk) 
j r  

where ~u~)~(xk) means the energy contribution of the occurrence xk at the 
site k and k ,J, k; x/, xk) means the energy contribution of.x~ toward xk. 
We distinguish two special cases. I f  ~12~t : k  ~J, k'x,. j , xk) = --jq~2~r j ;  xk, xj), 
we say  t h e  s y s t e m  is symmetric; we s ay  t h e  s y s t e m  is symmetric and 

homogeneous if, moreover, ~u~2~(j, k; xj, xk) = ~m21(Ij-kl;  xj, xk) for some 
function W 2~ independent of k. Symmetric and homogeneous systems are 
studied in refs. 2, 8 and 28. We are interested here in symmetric systems, 
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not necessarily homogeneous. If we look at the system restricted on 
[ - n ,  n] ~ Z, the total energy of (x ........ xo ..... x,,) is equal to 

Ok(~kx) 
k = - - i i  

where tr is the shift transformation on D. 
Our objective is to study the limit behavior of this energy when 

n ~ oo. For  convenience, we shall study the one-sided shift space D + =  
{ 1, 2 ..... q} n. Then the energy becomes Z~=0 ~bk(akX) �9 Instead of working 
with D +, we shall actually work with the interval [ 0, 1), or equivalently 
the circle T = R/Z, because there is a natural correspondence between the 
two spaces. The limit of the energy is then described by the the so-called 
Gibbs measures, whose existence will be proved under some additional 
conditions on tPk. These conditions also allow us to prove the uniqueness 
of the Gibbs measure and the existence of pressure, to estimate the 
Hausdorff dimensions of the singularity point sets of the Gibbs measure 
through the large-deviation results. The required condition is proved to be 
satisfied in the almost-periodic cases (the constant case, i.e., ~b k -~O, 
corresponds to the classical case ~2 28~) and in some random cases. 

We shall work in a slightly more general case than that described 
above. Let {2,},,>~o be a lacunary sequence of positive integers satisfying 
the condition 

L , I ) - , , +  ~ (n ~> 0), 1 < min 2"+ I ~< max 2"+ I < oo (1) 
,,>Io J . .  .>~0 )].. 

(the above case corresponds to 2,,=q"). Let {g,,},,~o be a sequence of 
positive, periodic, continuous functions defined on the circle T = R / Z  
satisfying the conditions 

sup ~ S"2(log gk, 2k/2,,) < O0 
">~~176 (2) 

0 <  inf g,,(x)<<, sup g,,(x)<oo 
n > ~ I , x E T  n>~l ,xCT 

where I2(g,f)=supl.,._.,.l<~, ~ I g ( x ) - g ( y ) l  denotes the modulus of con- 
tinuity of a function g (the above case corresponds to gk = exp ~Jk)" In this 
paper we study the weak limits of the sequence of measures 
Z,7~P,,(t) dt(n ~> 1 ), where Z,, is a normalization defined by 

1 n - -  I 

Z,,=~o P,,(t)dt with P, , ( t )= I-I g,(2kt) 
k = 0  
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Actually, we shall see that all weak limits are strongly equivalent in that 
the relation c-Iv(l)~/1(I)~ cv(I) holds for any two limit measures p and 
v, any interval / ,  and some constant c > 0 (see Proposition 2). W e t a k e  one 
of these limit measures as a representation and denote it by p. We call p 
the infinite product defined by the generating functions {g.} based on the 
lacunary sequence {2.}. The study will be made under the supplementary 
condition that the limit 

r = ,,lim- ~, ~ log [P,,(t)]/j dt (3) 

exists for every fl ~ R. This function is called the ~o-function. The existence 
of the limit (3) will be proved to be true in certain cases, for example, the 
case where 2, = q" for some q ~> 2 and {g,} is periodic, or almost periodic, 
or stationary in the probabilistic sense. 

Our aim is to give a multifractal analysis of such an infinite product 
measure. Multifractal analysis was motivated by models describing tur- 
bulence, diffusion-limited aggregation, percolation, etc. c2t'13't4~ Some 
rigorous results have already been obtained for some invariant measures in 
dynamical systems, ('' 6. 8.9, 25.29) for some self-similar measures generated 
by iterated function systems, c5''s'22) and for some quasiindependent 
measures. ~4' Let us recall the precise problem. For a given measure p on T 
and a given a >/0, we are interested in the size of the set of singularity 
points of order 

E~=IxET: lim l~ l og r  - a  

where It(x) denotes the interval centered at x of length 2r. Let 
f(00 = dim E~ denote the Hausdorff dimension of E~. We could say that p 
is multifractal iff(et) # 0 for a continuum of ~. By multifractal analysis we 
mean to provide a description o f f (00  as precise as possible. It is more 
interesting of course to know the function f(00 in a precise manner. In 
refs. 13 and 14 a solution was suggested: 

f ( 0 0  = inf (aft - r ( f l ) )  
/J 

where r is the so-called z-function, which is defined by 

log ~o 12(Ir(t))/~-I dl~(t) z(fl) = !i-m~ 1 1 
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if the limit exists. This formula is called the singularity spectrum formula. 
Our main result is that for an infinite product, we prove a weak form of 
the above singularity spectrum formula under conditions (1)-(3) and we 
prove the exact formula just mentioned if the function ~o is differentiable 
(which is equivalent to saying that r is differentiable). The same results are 
also proved for the packing dimension of E~. 

To some extent, infinite products generalize Riesz products, 135~ 
g-measures, ~s~ and G-measures? 3~ The results presented here can be 
applied to all these measures. 

The paper is organized as follows. In Section 2 we prove a fundamen- 
tal inequality which has its counterpart for symmetric and homogeneous 
systems in ref. 28 and the strong equivalence of two limit measures men- 
tioned above. In Section 3 we study the q~-function, the r-function, their 
conjugates, and their relation to large-deviation results. This is preparative 
to providing a limit theorem needed in Sections 4 and 5, where we study 
several different notions of dimensions, some of which are directly related 
to the r-function, and we prove the singularity spectrum formula. We 
return to the existence of the limit (3) in Section 6, which is devoted to the 
deterministic almost-periodic case, and in Section 7, which is devoted to 
the random stationary case. Some examples are examined in Section 8. 

2. F U N D A M E N T A L  INEQUALITY AND INFINITE P R O D U C T S  

We shall use the following notation throughout the text. For  two 
quantities u and v, u ~ v means " c -  ~v <~ u <~ cv for some c > 0"; for t e T, l ( t )  
means an interval containing t; ]I] means the length of an interval L Recall 
that 

P , , ( t )= H gk(2kt) 
k = 0  

which is defined in the Introduction. Define, for fl ~ R, 

Z,,(fl) = I] (P,(t)) /~dt  

Such a function is called a partition fimctionJ 28~ More generally, we define 
for 0~<m ~<n 

Pn 
P ...... = -~, ,  z ...... ( p ) =  (P  ...... (t))/~dt 
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L e m m a  1. Suppose that condition (2) is satisfied. There exists a 
constant C > 0 such that 

C-tP,,(s) <~ P,,(t) <~ CP,(s) 

holds for all n >~ 1 and all t and s with I t - s l  <~ 1/2,,_ j. 

Proof. We have the identity 

P,,(t) ,,-i 
=exp  )-'1 [log gk(2kt)-- log g~.(2ks) ] 

P,,(s) k =~ 

As I t-s[ <~ 1/2,_ ~, the sum in the last identity is bounded by 

/ i -  I 

~. .Q(log gk, 2k/2,-  I) 
k = 0 

By the condition (2), this sum is bounded by a constant D. We can then 
choose C = e  I~. I 

For n >~ 1, let F, be the subgroup of T generated by 1/2,_ ~ and .~-" 
be the sub-Borel a-field invariant under F , .  Let g denote the Lebesgue 
integral and d" the conditional expectation with respect to ~-". It is easy 
to see that for a n y f e L ~ ( T )  we have 

1 ~,,, - I - -  I 

o~"f(x)=2, ' ~ f (x+k/2 , ,_ , )  
- - I  k = 0  

L e m m a  2. Suppose that condition (2) is satisfied. For  any t i e r  we 
have a version of g"P(I such that for all n >/1 and all x e T 

C - I/Jl d'P,,/t ~<g "P.(.x) ~ < / t  " C I/tl gp,,It 

where the constant C is that in lemma 1. 

Proos Prove this for f l=  1. For any x, y e T ,  there exists a k o =  
ko(x, y) such that 

I x -  y -ko /2 , ,_ ,  I< 1/A,,_, 
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Then 

P,, Y 
~ n  -- 1 k = 0 

;.,,_,-t ( ko +k-ko '~  = 1 ~. p,, Y + 2 ~ , - i  ~ . ]  
' ~ ' n  - -  I k = 0  

1 "~"-'- . ( ko k2,_~_ i ) - E P,, + 
"~n- -  I k ' = O  

~ P,, x 
' ~ n - -  ! k = 0 

The last relation ~ results from Lemma 1 and the constant involved in 
isC.  | 

What we have just proved in Lemma 2 means that " /t P,, is almost a 
constant which is the integral of P,~. This allows us to show the following 
fundamental recurrence relation, called the fundamental inequality. 

P r o p o s i t i o n  1. Suppose that conditions (2) are satisfied. For  any 
fl ~ R the relation 

C_la  I .< Zt,,,(fl) _< Ci/~ I 
z,. Aft) z,,,-----.,,(fl)"~ 

holds for l ~< m ~< n. 

Proof. Notice that P ...... is .~-"'-measurable. Then we have 

= ~ [ ~  (P~.,,,P ...... )] = ~ [ P  ...... ~ -~.,,,j ~ - ,  ..... ~-~ .... 

For  the last ,~ we heave used the remark after Lemma 2. I 

For 0 e R consider the probability measures on T defined by 

pO( t) dt 
vo. ,, Z,,(0) 

Since T is compact, the sequence (vo.,,) admits some weak limit points in 
the space of all probability measures on T. We shall see that these limits 
are mutually absolutely continuous. Thus, to some extent there is a unique 
limit measure. For 0 = 1 this unique measure is just our subject of study. 
The family obtained while 0 varies will be called the family of Gibbs 
measures. 
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Proposition 2. Suppose that conditions (1) and (2) are satisfied. 
All of the weak limits of (vo.,,) are mutually absolutely continuous. 
Moreover, if vo denotes an arbitrary limit, we have the following 
approximation: 

o P,,(t) 
v~,(I(t)) ~ II(t)l z, , (O) 

holds for any interval I(t) containing t such that II(/)1 ~ . , 7 ' -  

Proof. Suppose, without loss of generality, that I(t) is strictly con- 
tained in an interval I' of length ,~,t [in general there is a finite number 
of such intervals whose union contains I(t)]. Then choose a continuous 
function h such that 

l /m~<h~<lr  

where l r  means the characteristic function of the interval I'. Now, if 
vo = limi vo. ,,,,, we have 

vr(I(t)) <~ f~ h(s) dvr(s) 

= lim 1 f~ 
j ~ ,y_ 

h(s) po ds m) 

C' lim sup 1 (i  h(s) P~l(s) po . , <<. , 3~ . ,  , , , j~s )  ds 
/ . . . .  Z , , (O)  Z , ,  ,,,,(0) ) 

f t "q 
~< C" lim sup P ,~( t ) I-I ~ s" j . . . .  Z,,(O) Z,,. m,(O) 'k =,, gk~ k J ds 

= C  . . . .  lim sup Z..... 1-I gO ds 
L , z , , ( O )  j . . . . . . . .  , , (0)  k=,,  

We have used Lemma 3 for the third line and Lemma 1 for the next to the 
last. The last equality is obtained by changing the variable of the integral. 
To finish the proof of the upper estimate, we have only to show 

Z,,.,,,j(O)= gO --~,,s ds 
k ~ t t  

This is verified by the change of variable t = s/2,,. Observe that the function 
under the sign of integration is periodic because 2,12k. The lower estimate 
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can be proved in the same way. In this case we choose an interval I '  strictly 
contained in I(t) of length 1/2,+,. for some r~> 1. We point out that the 
boundedness of 2,,+~/2,, is then needed. II 

The conclusion of this section is that the infinite product is well 
defined under conditions (1) and (2) and there is a family of Gibbs 
measures associated to it. 

3. T-FUNCTION, ~o-FUNCTION, AND LARGE DEVIATION 

Given an infinite product / t  defined by {g,,} based on {2,,}, we define 
its r-function by 

r(fl) = l im,  1---~- log I,i f l(I , . ( t))"- '  d~(t) 
,. ~ o l O g  I" 

where I,.(t) is the interval centered at t of length 2r, and its q~-function by 

cp(fl) = lira log Z,,(fl) 
. . . . .  log 1,, 

If these limits do exist for some fl, we say r(fl) and ~o(fl) are well defined. 
In general, these functions are not well defined. But they are well defined 
at the same time. We shall see that in some special cases (see Sections 6 
and 7) they are really well defined. Here we study r and q~ and their rela- 
tion to large-deviation results. 

The function ~0 being convex, we denote its conjugate by 

cp*(ct) = sup{aft-- r 

The function r being concave, we denote its conjugate by 

r*(a) = inf{ aft - r(fl)} 

The conjugates ~p* and r* are also called the Legendre transforms of ~p 
and r. 

Let us recall some standard properties of cp and q~* which will be used 
in the sequel. See ref. 26 for general information on convex functions and 
their conjugates. A real z is called a subderivative of cp at fl if 

q~(fl+t)-q~(fl)>~zt (Vt~R) 

The subdifferential of ~p at fl, denoted Oq~(fl), is defined as the set of all sub- 
derivatives of ~p at ft. Here are some properties we shall need: 
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(a) oL fl <~ go ( fl ) + 9 * ( o O, V~,fl~R. 

(b) afl=go(fl) + go*(~)c*.~Ogo(fl).  

(c)  ~ ~ ago(/~) . ~ / ~  ~ a ~ * ( ~ ) .  

(d) go** =go. 

P r o p o s i t i o n  3. Under conditions (1) and (2), r(fl) and go(B) are 
well defined at the same time and they are related by 

r( /~)  = ~ +/~go( 1 ) - 1 - go(/~) 

Their conjugates are related by 

r*(ct) + go*(1 + go(1)--ct) = 1 

Proof. Let r =  1/).,,. By Lemma 1 we have 

I A n -  I 

fo 2 
j = O  

' ( 1  P,,(j/)..) 'I/J-' I P,,(j/)..) 
~'~'--~" 2 . - ~ , , ( ~  J ).,, Z.(1) 

j =  0 

_ I ~"-' [ ~  P,, (y__"~l/'__I 
~ - '  \).,,1_1 ).,, ).,, Z,,( 1 )/~ . i=o 

1 J 
~2{~ 'Z,,(1)/'Io [P"(t)]/~dt 

Then 

rl  
log Jo ll(I"(t)/') d~(t) 

= - ( f l  -- 1) log 2 . - - f l  log Z,,( 1 ) + log Z,,(fl) + 0(1) 

The relation between r and go follows. From this relation we can obtain 
that of the conjugates by using their definitions. | 

Recall Ellis's result on large deviations, t~) Let (IV,,) be a sequence of 
real variables defined on a probability space (~, ~r a) and (a,) be a 
sequence of positives. Assume that for all fl e R 

c,,(fl) =--1 log Ee/'~" 
a n 
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is finite and the limit 

c(fl) = lim c,,(fl) 

exists. We call c(fl) the fi'ee energy function of (W,,) with respect to a 
[weighted by (a,,)]. The case where a,, = log 2, is the interesting case for us. 
The upper large-deviation bound says that under the assumption made on 
c(fl), for any closed set K c  R we have 

1 
lim sup - -  log o-{a,; -~ W,, ~K} ~< - inf c*(0Q 

Now consider the variables defined on T by 

W,= log P,, (n>~l) 

We are going to study the behavior of IV,, with respect to %, normalized 
if necessary. In order to apply the large-deviation result just mentioned we 
ought to study the free energy function of our sequence W,, = log P, with 
respect to v o, which is actually defined by 

1 f~ P,,(t) dvo(t) Fo(fl) = ,,lim~ ~._ lo---~,, log /~ 

Notice that Vo is simply the Lebesgue measure. So Fo(fl)= ~o(fl), which is 
just the free energy function of { IV,,} with respect to the Lebesgue measure 
weighted by {log 2.}. A useful fact is that for each O, F. is directly related 
to q~. 

Proposi t ion  4. Under conditions (1) and (2), we have 

F~.( fl) = q~(fl + O) + q~( O) 

F~(~) = ~o*(~) + ~o(0) - - s0  

Proof. The second equality follows from the first one. For  the first, 
we have only to observe 

' P" dv~ 2,, i ft P " ~  dt :~ i, /, = !  ~ I'+~ z,,(/3+ol 
Z,,( O ) Z,,( O) 

where the sum is taken over intervals I=[i/2, , , ( i+1)/2, ,]  (0~<i<2, ) .  
Lemma 1 is used for the last relation. 1 
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Consequently we have 

F~(~) = 0 r o~ e 0~p(0) 

By the positivity, convexity, and compactness of level sets of F~ ,  we know 
0cp(0) is a compact interval. Let 

zlc;- =min{x"  x e 8~0(0)}, d~ + = m a x { x :  xeOcp(O)} 

According to the upper large-deviation bound mentioned above, for 
any 6 > 0 there is a positive q > 0 such that 

1 
vo{t~T: A,,(t)r [3~7 -3 ,  3~7 +6)} ~<-- ~', 

where A,(t)  is the average 

log P,,(t) 
A,,(t) 

log ).,, 

Then the Borel-Cantelli lemma applies. Thus we have proved the following. 

Proposi t ion 5. Under conditions (1)-(3) we have 

A~7 ~< lim inf l~ P,,(t) <~ lim sup log P,,(t____) <~ dc~/ 
. . . . .  log 2 . . . . . . . .  log 2,, 

vo-almost everywhere. 

4. D I M E N S I O N S  

First we recall the definitions of Hausdorff dimension and packing 
dimension and a method for calculating these dimensions of a set based on 
the measures supported by the set. Then we translate our r-function as 
L/J-dimensions, which have recently been the subject of intensive investiga- 
tionJ 17-19, 30, 31) 

For 0 ~< s < oo and A c T we define for any 0 ~ 6 < oo 

,)ff:~(A) = i n f  ~ (diam E;) ~ 
i = ]  

where the infimum is taken over all coverings { Ei} of A by closed intervals 
of diameter at most 3, i.e., A c 0 ; ~  E; and diamEg~.<6. The .Jg~(A) is 
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obviously decreasing as a function of d. Then we define the s-dimensional 
Hausdorff measure of A by 

~~(A)  = lim ~f~i(A) 

and the Hausdorff dimension of A as 

dim A = sup{ s: ~ " ( A  ) = ov } -- inf{ s" Jg"(A ) = 0 } 

~f~~ is an outer measure and Borel regular/271 The packing dimension is 
defined in a slightly different way. First let 

P~(A) = sup ~ (diam EA" 
i = l  

where the supremum is taken over all disjoint families (packings) {E,.} of 
closed intervals { E;} such that diam E~ ~< d and the centers of the E~ are in 
A. Here P"(A)=Iim,~_oP~(A) is also well defined, but is not an outer 
measure. Then we define the s-dimensional packing measure of A by 

�9 ~"(A) = inf  ~ P~(A;) 
i = 1  

where the infimum is taken over all decompositions of A, i.e., A = 0 i~0  Ar  
The packing d#nension of A, denoted Dim, is defined in the same way as 
the Hausdorff  dimension, which means 

Dim A = sup{s: ~'-"(A ) = Go} = inf{s: ~"(A) = 0} 

There is a very useful method for the calculation of Hausdorff  dimen- 
sion and packing dimension of a set (see, e.g., ref. 20), which we state as the 
following proposition. To describe this method, we introduce a notation 
which is also useful in the next section. For a Radon measure p on T and 
a point x e T, define 

log p(I,.(x)) 
/)(p, x) = lim sup 

,._ ~ log r 

We also define _D(p, x) in the same way by replacing lim sup by lim inf. If  
_D(p, x) =/3(~t, x), the common value is denoted by D(p, x). 
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Propos i t ion  6. Let/2 be a Radon measure on T. For any t >I 0 we 
have 

dim{x: _D(/2, x) ~< t} ~ t, Dim{x:/-5(/2, x) ~< t} ~< t 

If A is a set of T with /2(A)>0 and _D(/2, x)>~t for every x e A ,  then 
dim A >/t. Similarly, if B is a set of T with/2(B) > 0 and /5(/2, x)/> t for 
every x e B, then Dim B ~> t. 

We now recall several notions of the dimension of a measure/2. In 
ref. 9 the upper and lower (Hausdorff) dimensions of/2 are defined by 

dim*/2 = inf{ t/> 0: _D(/2, �9 ) ~ t/2-a.e} 

dim,/2 = sup{ t/> 0: _D(/2,. ) >/t/2-a.e} 

In a similar way, we can define the upper and lower (packing) dimensions 
of/2 by using/-5(/2, �9 ) instead of/5(/2, �9 ).~32~ Denote these two dimensions by 
Dim*/2 and Dim,/2. As a consequence of the theorem in the next section, 
we have the following result. 

Propos i t ion  7. Suppose conditions (1)-(3) are satisfied. For the 
infinite product/2 we have 

1 + cp(1)-  A ~- ..< dim./2 ~< dim*/2 ~< 1 + ~0(1)-A i- 

1 + cp(1)-  A ~- ..< Dim,/2 -~< Dim*/2 -~< 1 + ~0(1)-A ~ 

If q~ is differentiable at 1, all these dimensions are equal to z ' (1 )=  
1 + q~(1)- qr 

Each of these definitions attempts to capture the idea that the dimen- 
sion of/2 is equal to a if/2(I,.(x)) behaves like r ~ almost everywhere. The 
L/~-dimension of/2 is defined in order to capture the idea that /2(I,.(x)) 
behaves like r ~ in the sense of the L/~ average. 

Let J,, be the family of intervals I=[ i /2 , , ,  ( i+  1)/2,,] (0<~i<2,,). For 
fl > 1 the upper L/~ dimension of/2 is defined by 

dim/s/2 = lim sup log Z/~.~,,/2(I)/~ 
. . . .  (fl--  1)log III 

and the lower L/i-dimension dim/~ p is similarly defined by the lim inf. If the 
two dimensions are equal, we write dim/~p for the common value, called 
the L/I-dimension. The definition given here is slightly different from the 
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usual one, but for an infinite product under conditions ( 1 ) and (2) it is the 
same as the usual one. Actually, if condition (3) is also satisfied, we have 

r(p) 
dim/~ kt = fl _ 1 

5. M U L T I F R A C T A L  A N A L Y S I S  

Now we can prove the singularity spectrum formula. 
Let p be a measure and I be an interval. Denote 

_E/= {xET:_D(p ,x)E1}  

E / =  { x E T :  s x )E l}  

E / =  { x E T :  D(p, x )E1}  

If I =  {~}, we shall write _E,, /~ ,  and E, .  The measure p does not figure 
in the notation, but there is no confusion because we always talk about a 
fixed infinite product. 

Just like 0cp(0), 0r(0) is also an interval. We denote it by [ 0 - ,  0+] .  
This means 0 - = m i n 0 r ( 0 )  and 0+ = m a x  0r(0). Note that the sub- 
derivatives of r are nonnegative because r is nondecreasing, so 0+>/ 
0 - / > 0 .  

Recall that since r is concave, a real z is a subderivative of r at 0 [ i.e., 
0E 0r(0)] if 

r(O+t)-r(O)<<.z t  (VtER) 

As r and cp are related by a linear function (Proposition 3), we have 
the following relation for their subdifferentials: 

[ 0 - ,  0 + ] = 1 + q , ( 1 ) -  [a~ - ,  zl,] ] 

Define 

log P ,,( x ) 
A(x) = lim sup 

...... log 2, 

Similarly we define _A(x) and A(x) .  

P r o p o s i t i o n  8. Suppose that conditions (1)-(3) are satisfied. We 
have 

D(vo, x)  = 1 - OA(x) + q~(O) 
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Let ~ ~ R and x E T. The following facts are equivalent: 

1. /)(p, x) = ~. 

2. _A(x) = 1 + q~(l)-~.  

3. /)(vo, x) = 0 ~ -  r(0). 

The same relations hold for _D and D with d replaced, respectively, by 
and A. 

Proofi Let r ~  1/2,. By Proposition 1 we have 

1 o . P,,(.x) 
vo(l"(x))  ~-~,, Z,,(O) 

from which the first equality follows immediately. Let 0 = 1. We have, in 
particular, the equality 

D(p,  x)  = 1 - A_(x) + ~p( 1 ) 

which implies immediately the equivalence of facts 1 and 2. I f / ) (p ,  x ) =  ~, 
substituting A_(x)= 1 + q~( 1 ) - ~  into the equality proved above gives 

D(vo, x ) =  1--0[1 +q~(1)--~] +~p(0) 

= 0 ~ -  [ 0 -  i + 0q,(1)-  q,(0)] 

Thus we obtain the equivalence of facts 2 and 3 if we use the relation 
between ~p and r established in Proposition 3. | 

As a direct consequence of the preceding proposition and Proposi- 
tion 5, we have the following result. 

P r o p o s i t i o n  9. Under conditions (1)-(3) we have 

1 - OAc + + q~(O) <<. _D(v o, x)  <~ D ( v  o, x)  <<. 1 - O A [ / +  q~(O) 

vo-almost everywhere. 

T h e o r e m  1. Suppose that conditions (1)-(3) are satisfied. 

1. For 0>~0 we have 

r*(O-  ) <<. dim E_ [o-.o§ l ~<r*(0 +) 

r*(0- )  ~< Dim Eta- , o+ 1 ~< z*(0+)  

For 0 ~< 0 the above inequalities hold if we change the roles of r*(0- )  and 
r*(0+). 
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2. If  ~ = ~'(0) for some 0 we have 

dim E ,  = dim _E = dim s = Dim E~ = D i m  _E ~ = D i m / ~  = z*(~) 

Proof. 1. Suppose 0>/0.  Not ice  that  

-EEo-. o+1 = {x: 0 0 -  - r(0) ~<_D(vo, x) <~ 00 + - r(0)} 

Not ice  also that  

Fan 

O0-  - z ( 0 )  = 1 - 0A~- 4- ~p(O) 

00 § - - z (O)= 1 -Od~;  + ~ ( 0 )  

According to the last proposi t ion,  there exists a Borel set F 0 such that  
vo(F,) > 0 and for every x �9 F~j 

1 -- (/A ~- 4- cp(0) ~< _D(vt, , x) ~</)(v~. x)  ~< 1 -- 0.4r7 4- q~(0) 

So F~j r  This implies, by Propos i t ion  6, tha t  

~-*(0 ) = 0 0 -  - z(0) ~< dim Fo ~< dim _E{.-. o+ ] ~< 00+ - z(0) = z * ( 0 -  ) 

I f  0 ~< 0, it suffices to note  that  we get inverse inqualities in the expression 
of  E{~- ' tJ*l. The  p roo f  of  the two other  inequalities is exactly the same, just  
replacing dim by Dim and _D b y / ) .  

Result 2 has the same p roo f  as result 1, but  using also D(vo, x). I 

6. EXISTENCE OF q~-FUNCTION: DETERMINIST CASES 

We consider here a special case where 2 ,  = q" for some integer q. We 
prove  that  if {g,,} is a lmost  periodic in a sense we shall make  precise, the 
corresponding ~-funct ion is well defined. We observe also that  this function 
is analytic if {g,,} is periodic or  eventual ly constant .  We begin with the 
latter, simple case. 

T h e o r e m  2. Let q ~ 2  be an integer and {g,,} be a strictly posit ive 
function defined on T with the p roper ty  that  O( log  g,,, - ) ~ O( .  ) for some 
function O satisfying 

I L O ( r )  d r <  
o ~  

} I" 

Then the ~p-function is well defined and analytic if one of the following two 
condit ions is satisfied: 



Mult i f ractal  Analysis of Infinite Products 1329 

1. { g,,} is periodic, i.e., g,, § r = g,, for some p >/1. 

2. There is some function g such that 

1 
~. (lllog g , , - l o g  gLlc~T~) = 0  lim ~ , 

I l l ' J2 :  n =  

Proof .  If {g,,} is a constant sequence, i.e., p =  I, the result is well 
known. ~28~ We are going to see that the results for the two cases listed 
above are consequences of this well-known result. 

For result 1, let ~ = qP (p  >~ 2) and ~(x) = I-IJ'-o ~ g(qLx'). We have only 
to observe the relation 

Z,,r(fl) = 1--[ g(q~" +Lx) = ~(0kx) 
k = O  0 k = 0  

For result 2, we observe first that Ilog g ( x )  - log g(Y)l is bounded by 

[log g ( x )  - log g,,(x)l + [log g, , (x)  - log g,,(y)[ + [log g, , (y)  - log g(Y)l 

So, if Ix - Yl < & for any e > 0, for large n/> n,: we have 

Ilog g ( x )  - log g(Y)l ~< 2e +/2(~) 

Then/2(log g, �9 ) ~</2(. ). Observe also that the condition implies that 

log P,,(x) = log 1-'[ g(qLx)  + o(n) 
j = o  

holds uniformly in x. Thus the ~p-function is the same as that defined 
byg .  I 

Given a sequence of functions {g,,} in C(T), it is said to be almost  
periodic  if for any e > 0 there exists a positive 1 > 0 such that any interval 
of length 1 contains an integer r such that 

I Ig , ,+~-  g, , l lccrl  <-..~ (Vn) 

For example, let/1 e C(T) and let {a,,} be a sequence of real number which 
is almost periodic in Bohr sense and satisfies sup,,~>o Ila,,ll <l/llhllccTI. 
Construct two sequences of functions {f,} and {g,,} by f , , =  1 + a , , h  and 
g,, = log f,,. It is easy to verify that these two sequences are almost periodic. 

822/86j5-6-28 
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Theorem 3. Let {2,} = q "  for some q~>2, and let {g,,} c C ( T )  be 
a sequence with the properties that {log g,,} is almost periodic and that 
lig,,ll ~ Ilg,,+~ II. If condition (2) is satisfied, then for every t i e R ,  ~p(fl) is 
well defined. 

Proof. First we make a remark which generalizes a known fact about  
the convergence of subadditive sequences. Let {a,,} be a sequence of real 
numbers. Suppose for any e > 0 there exist two constants A = A,: and 
B = B,: such that 

a,,+,,,<~a,,+a,,,+A+eBm (Vn, m) 

Then the sequence {a,,/,,",,} converges�9 In fact, for any k/> 1, by induction we 
have 

ah.,,,<~k(a,,,+A+eBm) (Vm) 

Write n = k m  + i with 0 ~< i < m; we have 

a,,<~k(a,,,+A+eBm)+( max ai+A+eBm) (Vm) 
0 -%< i < m 

Divide this inequality by n and then let n ~ co. We have 

a n a , .  ,4 
lim sup - -  -%< - -  + + e B  

/ I  m m 

It follows that lim sup a,,/n <% lim infa,,,/m. 
Let e > 0 .  Since {log g,,} is almost periodic, there exists l with the 

property that for any n we can find r such that I n -  rl-%<//2 and 

Ilog g,+k(x)-log g~.(x)l ~<e (Vx ET, Vk) 

So, ifM=sup,,(llg,,ll/llg,,+, II + IIg,,+, II/llg,, II), 

| m~_~ 1 
Z .... +,,,(p) ;o /~ ~ �9 = g , , + ~ , . ( q  x )  

k = 0  

k=0 g~+~(qkx) 

1 m -  I 

<~Mtl/Jte':"' Io rI g{!(q kx) 
k = 0  
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Since the last integral is Z,,,(fl), by using Proposition 1 we have 

log Z,, + ,,,(fl) ~< log Z,,(fl) + log Zm(fl) + I/~1 log C + 1 1,61 log M + em 

Finally we have only to apply the remark. I 

7. EXISTENCE OF ~o-FUNCTION: RANDOM CASES 

Let X be a probability space and let ~:  X--* C(T) be a measurable 
mapping. We write ~(~) = gr ). Let co = (co,,) be a sequence with elements 
in X. We are going to choose our generating functions according to 09 as 
follows: 

g, , ; , , l=  ~(o9, , )  = g,,,,, 

The corresponding functions will be denoted respectively by P(,;"), Z(,; "), 
cp c'''l, etc. 

T h e o r e m  4. Suppose there exists a function I2(.) such that 
O ( f ,  �9 ) <~ f2(. ) for every function f in the image of ~ and 

f~ s'2(r) dr < o o 
r 

If co = (co,,) is stationary, for almost surely all co the following limit exists 
for every fl ~ R: 

cp(")(fl) = lim 1 logq Z(,:")(fl) 
I t  ~ ,-f- n 

Furthermore, if this sequence is ergodic, the limit is independent of co and 
is equal to 

cp(fl) lim 1 E ('") = l o g , / Z , ,  (fl) 

Moreover, 

Proof.  
tion 1, we have 

c,o(fl) 1 ElogqZl/, ,)(f l )  ~< 
/ I  

IBI log C 

For fixed fl let f , , (c .o)=logqZt") ( f l ) .  According to Proposi- 

f,, +,,,(r = f,,(co) + f,,,(T"r + O(1 ) 
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for n, m/> 1, where O(1) is bounded by Itl log C. As (co,,) is stationary, the 
Kingman subadditive ergodic theorem implies the existence of the limit in 
question and confirms that the limit is cp(t) in the case of ergodicity/~6~ 
Consequently, for almost all 02 the limit exists for a countably dense set 
of t i eR .  Now, observe the convexity of ~" log Z,, (fl) as function of ft. 
According to a convergence property of sequences of convex functions 
(ref. 26, p. 90), for almost all co the limit exists for all t i e R  and is even 
uniform on each compact subset of R. 

The last equality allows us to write 

m -  I 

f,,,(co) = ~ f,,(T'aco) + O(m) 
k = 0  

Taking expectations and dividing by nm, we have then 

1 E f , , , , , = l E f , , + O ( 1 )  
H i l l  11 

Here we have used the stationarity of (co,,). F inal ly ,  let m -~ c~. | 

Proposit ion 10. Suppose the hypotheses in the last theorem are 
satisfied. Suppose, moreover, that {co,,} is an i.i.d, sequence with common 
distribution F. Then we have 

cp(fl) ~< log,, f f  g(~(t) dt dF( . ) 

We just have to apply the H61der inequality to the expression for r in 
the last theorem. In ref. 11 it was announced that the equality is valid, but 
we had some difficulty proving it. However, the following remark might be 
useful in an attempt to prove the equality. 

Fix ft. Let 

1 
Z .  ( t )  Y,,(w) = -  logq c,,,J 

n 

By Proposition 1, 

- I t l  log,, C~< log,, ZC,;'~,,,(fl) - -  [ l og , ,  ZC,;"~(fl) + log, ,  Zt,,';"(fl)] <~ Itl log,, 

If follows that 

C 

I ] - - -  Y , , (T  02) <~ y,,,,(co) /,, Jill logq C 
ITl j = 0 n 
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Consider the Laplace transform of Y,, defined by 

L,,(~) = E exp ~Y,, ( ~ e R )  

Notice that the terms in the last sum are independent. We can obtain 

e - I  Ir Iog,~ c'~/,,[L,,(~/m)],,, ~ LI,,,,(~) <~ e ~ 141r;I log, t cv,,[L,,(~/m)],, ,  

8. E X A M P L E S  

Let us consider some examples. 
The first example is the Riesz product 

= f i  (1 + Re a.e2ni2nt)  

/i = o  

where (a,,) is a sequence of complex numbers with In,, I ~  < 1. The product 
makes sense, for it does converge weakly, ~3s~ even if the corresponding 
generating functions take zero as a value, i.e., if la,,I = 1. In the sequel, we 
assume la,, I ~  < r <  l(Vn) for some r. For  such products, multifractal analysis 
has been done in the case where the sequence (a,,) is constant and 2,, = q" 
for some integer q.16.9~ AS consequences of  the results we have obtained in 
the preceding sections, we can add the following cases: Recall that we 
suppose 2, = q", 

(i) (a,,) is periodic or almost periodic. 

(ii) (a,,) is such that there is a real number  c such that 

lim 1 " -  - Y ' ,  la,,-cl = 0  

(iii) Almost surely every sequence of an ergodic sequence (a,,(co)). 

A special case of (i) is a , ,=re  i''~ for some 0 < r < l  and some real 
number  ~z. If  ~ is rational, (a,,) is periodic; if ~ is irrational, (a,,) is almost 
periodic. Notice that there is a general way in ergodic theory to produce 
almost-periodic sequences from ergodic isometry. ~2s~ The conclusion of (ii) 
is that the multifractal property of the Riesz product ll,, defined by (a,,) is 
the same as the Riesz product defined by the constant sequence taking 
value c. Thus, if we have another Riesz product Ph defined by a sequence 
(bl,) such that n -~ ~ " - ~ r a , , - b , , I  tends to zero, then lz,, and/2/, share the /--~./= 0 

same multifractal property. We should point out that there are couples of 
/z,,, iz/, which are singular with respect to each other, e.g., a , , = r  and 
b , = r + n  ' : for  s o m e 0 < e ~ < l / 2 .  ~24~ 
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These Riesz products are merely special cases of G-measures, 13~ which 
include g-measures, t ~51 Let us recall the definition of G-measures, which are 
defined as ergodic measures under the action of the direct sum of finite 
groups. Let {Xk}(k >/1) be a sequence of finite Abelian groups of orders 
{ink}. Let X be the infinite product and F be the infinite direct sum of 
groups in this sequence. F can be identified with a subgroup of X and then 
it acts on X. For  ~ = (y,,) e F (there are finitely many nonnull coordinates 
of ~,) and x=(x , , ) eX ,  the action of ~, on x is denoted by ),x, i.e., 
~,x=(L,+x,). Let F, be the direct sum of Xk(1 <~k<<.n). We shall be inter- 
ested in the actions of these subgroups of F. The product topology makes 
X a compact metrizable space. Suppose we are given a sequence of 
continuous nonnegative functions {g,}, i.e., 0 ~< g, e C(X), such that g, is 
F,_l-invariant [i.e., g,,(x)=g,,(),x) for all ~ 'eF, ,_l  and all . veX]  and 
normalized in that 

1 
- -  5-" g , , ( ~ x ) = ]  ( V x e X )  

A measure is called a G-measure if dll/dll,, = G,(x), where 

G,(x)= ~ gk(x) 
k = l  

1 

I]Vl 1 lJVl 2 " " " m , ,  r~ i;, 

(~ o )J is the image of/~ under the action of y). Here G means the sequence 
G =  {G,,}. The uniqueness of such G-measures is studied in refs. 3 and 10, 
where some sufficient conditions are found. For  example, if the g,  are 
strictly positive and if the functions log g, satisfy a Lipschitz condition, 
then there is a unique G-measure. 

Our study of infinite products on T can be translated word for word 
into the situation for G-measures on X. Actually, in the case where 
Xk = Z(mk), there is a canonical mapping from X onto T defined by 

H ( x )  = 
X k  

k = l  m l  - . - m ~ .  

We do not restate the results for G-measures because they are exactly the 
same. We should point out that it is the method which can be adapted in 
the case of G-measures, not the results which can be applied to G-measures. 
We should have started with G-measures. Our choice was made because of 
the concreteness of infinite products. Also, we should point out that even 
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for G-measures, taking powers gll to construct the corresponding Gibbs 
measures will destroy the condition of normalization. It is thus not practi- 
cal to use G-measures to construct Gibbs measures. Anyway, it is not 
important for us whether a Gibbs measure is a G-measure or not. 
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